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Abstract. This study reviews published information on the tactical management decisions needed to maximise
economic grain yield in winter-dominant rainfall regions of the Mediterranean type. Tactical decisions are defined as
those relating to the period from immediately before sowing to harvest. Tactical management is the principal means by
which farmers respond to changing environmental and short-term economic conditions as the season progresses. The
review considers published evidence that underpins these decisions and relates to cereal crops (wheat, barley and oats),
pulse crops (field pea, faba bean, chickpea and narrow-leaved lupin) and canola.

The criteria used to guide management decisions during the season involve soil and tissue tests for nutrients,
knowledge of weed numbers and resistance status in the current and previous seasons, weather conditions that favour
disease development, and knowledge of thresholds and biology of insect pests that may warrant control measures. All of
these decisions can be related to the timing of the opening rains and the length of the growing season; the crop, pasture
or weeds present in the previous two seasons; the presence of pest- and disease-bearing crop residues; and the type of
tillage in use. Most of these indicators require further refinement through research across environments, soil types, crop
types and production systems.

The likely interactions between tactical or short-term management decisions, longer term or strategic decisions, and
genetic factors are discussed. The prevalent use of chemicals in the management of biotic factors that can impact the
crops is noted, as is progress towards various systems of ‘integrated’ management of these threats to crop production.
Most tactical decisions in rainfed cropping systems appear to be supported by adequate evidence, although some
decisions are still based on practical experience and observations.

Application of tactical management practices together with strategic management and use of improved genotypes
provides the possibility of achieving rainfall-limited potential grain yield at a regional scale. The papers reviewed have
been selected partly on the basis that the experimental treatments achieved the estimated potential grain yield. Where
the potential grain yields are not being achieved in commercial crops, it remains unclear whether this is due to
inadequate adoption of existing information or inadequate research to identify and address the underlying causes. We
highlight the need to devise a simple decision aid to assist farmers and their advisers to respond to the variable seasonal
conditions evident since the turn of the Century.
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Introduction

Grain production in rainfed agriculture is inherently risky,
largely owing to substantial variation in amount and
distribution of annual rainfall (e.g. Australian Farm Institute
2012), leading to insecurity of the food supply in many regions

(e.g. Amede and Tsegaye 2016). However, the grain produced
from rainfed agriculture is important for world food supply, and
the productivity of the farming systems in these areas needs to be
improved to meet future world food requirements (e.g. Sadras
and Angus 2006; Anderson 2010; Godfray et al. 2010),
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especially as the climate changes (Garrett et al. 2006; Ludwig
et al. 2009; Luo and Kathuria 2013; Fischer et al. 2014). Grain
yields (GYs) in rainfed agriculture can be improved in three
broad areas: tactical, short-term or seasonal management
(e.g. Turner 2004; Anderson et al. 2005); strategic or longer
term management that largely involves soil improvement
(e.g. Carter et al. 1998; Bakker et al. 2007); and genetic
improvement (Fischer and Edmeades 2010). Analysis of the
results of field experiments conducted over a range of rainfed
environments tends to suggest that, after accounting for the
effects of environment (site, location and season), the impact
of management is at least twice that of genotype (Anderson
2010).

Tactical management practices based on field
experimentation and observation and applied immediately
before and during the growing season may involve
adjustments to seeding rates (Leach et al. 1999; Tokatlidis
2014); variations in fertiliser rates (Jarvis and Bolland 1990;
Robertson et al. 2012), placement (Nyborg and Hennig 1969)
and timing (Anderson 1985; Seymour et al. 2016; Simpson et al.
2016); changes to sowing time and choice of maturity class of
cultivars (Anderson et al. 1996; Stephens and Lyons 1998;
Sharma et al. 2008) and to seeding depth and method
(Schmidt and Belford 1993); dry sowing (Kearns and Umbers
2010); use of herbicide, disease and pest tolerant or resistant
cultivars (Jayasena et al. 2018); and various chemical and non-
chemical methods of weed management (Farooq et al. 2011;
Walsh 2016; Moore and Moore 2020). Tactical management
practices and their timing are not a fixed sequence but will vary
according to seasonal and market conditions. The evidence
discussed here comes largely from the winter-dominant
rainfall areas in Australia that are Mediterranean-type
environments, classified by Koppen–Geiger as Csa, Csb and
BSk (Peel et al. 2007). These environments are found in the
Mediterranean Basin and on the west coast of every continent
at a latitude ~25–408 with an average annual rainfall of
~250–1000 mm.

Farmers in rainfed agricultural regions have also developed
strategies that may need more than one season to take effect,
but that can have an impact over many years in improving crop
productivity. These strategies may involve practices such as
fallow to conserve soil water (Guler and Karaca 1988);
integration of animal production with cropping to diversify
sources of income (Virgona et al. 2006; Schiere et al. 2006;
Bell et al. 2014); use of legume or broadleaf crop rotations in
conjunction with cereals to improve soil nitrogen (N) and
assist disease and weed management (Donald 1962; Angus
et al. 1991; Kingwell 1994; Doole and Weetman 2009;
Christiansen et al. 2015; Renton et al. 2015); and various
systems involving combinations of practices such as no
tillage, retention of crop residues, deep ripping and
application of gypsum to address soil compaction (Hamza
and Anderson 2003), and controlled traffic farming and crop
rotation to maintain soil fertility (e.g. Kingwell et al. 1993;
Kingwell and Fuchsbichler 2011; Serraj and Siddique 2012;
Loss et al. 2015; Alrijabo 2014; Sommer et al. 2014). There is
some evidence that GY responses to tactical inputs and those
obtained from strategic treatments such as soil improvements
are additive (Anderson 2010). This paper concentrates on

tactical management practices that can be used during the
short-term, as previously defined.

Although the choice of crop cultivar cannot be changed
after sowing, we view the choice of cultivar as a component of
tactical management because the decision may change
depending on the timing of the opening rains and the likely
length of the growing season (Anderson et al. 1996). The use
of cultivar mixtures (Fletcher et al. 2019) could be seen as an
aspect of tactical management in reducing the risks of such
factors as terminal drought and frost damage, anticipated
disease risk (Loughman et al. 2000) or weed burden and
resistance status. The differential response of crop cultivars
to tactical agronomic inputs has not been widely confirmed but
may be important under specific circumstances of environment
and where differences between genotypes are large (Anderson
et al. 2011).

Despite the difficulties of estimating and verifying the
potential GY for rainfed crops (Anderson 2010), there is
some evidence that the best farmers in the more favoured
areas (fertile soils, more evenly distributed and reliable
rainfall) and/or using the most advanced management can
approach the estimated potential for common wheat
(Triticum aestivum L.) (Poole et al. 2002; Abeledo et al.
2008; Richards et al. 2014; Robertson et al. 2012;
Anderson et al. 2016). However, when regional average
GYs are considered, the tendency is for GYs to approach
the estimated potential only at seasonal rainfall �~250 mm
(Anderson et al. 2005). This probably suggests that the
management techniques associated with low seasonal
rainfall are well accepted and dealt with by farmers,
whereas the risks associated with the opportunities to
increase GYs in the wetter seasons are unacceptably high,
given the difficulty of predicting seasonal conditions. In either
case, an estimate of the gap between average or actual GY and
the estimated potential can be useful in deciding whether
further effort to improve GYs is possible and likely to be
profitable (e.g. Keating et al. 2003; Hochman et al. 2012).

In any given growing season, there is a sequence of
decisions that are influenced by the likely GY or target GY,
which is determined largely by the amount and timing of the
seasonal rainfall. The timing of the opening rains sets the likely
length of the growing season, the likely amount of rainfall, and
thus the GY that is possible for a given set of soil physical and
chemical conditions (Anderson 2010). Decisions regarding
weed, pest and disease management during the season will
be based on the likelihood of these factors reducing the target
GY. The extent to which the target GY is realised will depend
largely on the decisions made to manage and defend crop
growth as the season develops. The whole-farm implications
of various decisions have been examined further with respect
to output responses (Kingwell 1994; Kingwell and Pannell
2005) and risk aversion (Kingwell 1997).

This paper summarises the published information available
for making tactical management decisions and demonstrates
how this information can be used to allow crop managers to
approach more closely the target GY as set by the seasonal
rainfall. Most of the published information considered in this
review contains data that compare experimental GY with some
estimate of the potential GY for each growing season. The
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information on tactical management, along with information
on strategic management and improved genotypes, underpins
the advice commonly given to farmers and, in addition, can
supply functions in the construction of crop models.

Tactical agronomy

Start and length of the growing season

Most farmers have developed an experiential rule about the
amount and timing of the opening rains constituting the start of
the growing season. This rule commonly describes an amount
in a single fall after a pre-determined date that may be based on
the likelihood of frost damage resulting from early sowing. For
example, 20 mm rain over 1–2 days after April 25 is a common
criterion in some parts of the Western Australian (WA) grain
belt. These ‘rules of thumb’ can likely be strengthened by
further research. The end of the effective growing season can
be estimated as the average temperature associated with grain
maturity. For example, 238C average maximum for wheat as
used by French and Schultz (1984).

With these criteria, the length of each growing season for a
given location, using local records, can be estimated and this
length in turn can be related to the likely amount of seasonal
rainfall each year (Anderson 2010). Thus, in a given season on
the date when the opening rains are received, the likely length
of the season and the likely amount of rain can be estimated for
a given location.

Target grain yield

By using the estimated seasonal rainfall, a target GY can be
estimated at the start of each season with either a simple water-
balance equation (Nix and Fitzpatrick 1969; French and
Schultz 1984; Anderson 1985) or a more sophisticated crop
model using more variables that may influence crop growth
and GY (e.g. Stephens et al. 1989; Keating et al. 2003). This
target GY, however estimated, can be updated during the
season according to the actual rainfall received, as distinct
from the estimate at the beginning of the season. This may be
one method of adapting to the changes in rainfall patterns that
have been noted by Stephens et al. (1989) and reflected in
average wheat GYs subsequently (ABARE 2017). It may also
be used to vary the rates of fertilisers required to achieve the
target GY.

Time of sowing and choice of cultivar

It is generally accepted that longer season (later maturing)
wheat cultivars should be sown early in the season when the
opening rains occur early, and shorter season (early maturing)
cultivars can be sown later (e.g. Doyle and Marcellos 1974;
Anderson et al. 1996; Stephens and Lyons 1998). Long-season
wheat cultivars may yield the same as mid- or short-season
types when sown later (Sharma et al. 2008); however, the grain
quality (small grain screenings, hectolitre weight) of long-
season cultivars may be unsatisfactory when sown later in the
season (Sharma and Anderson 2004).

In addition to reducing exposure to drought and frost
damage by matching cultivar maturity to anticipated length
of growing season, seasonal financial risk can be reduced by
choosing cultivars attracting a price premium. For example,

hard, soft and high starch-quality wheat cultivars that may
qualify for premiums can be grown with minimal risk if the
rotation and soil type are appropriate, even if their GY
potential is not high (Anderson and Sawkins 1997;
Anderson et al. 1995, 1997).

Plant population or seed rate

The target GY can be used to estimate the plant population or
seed rate needed to support that target. For example, a
population of 40 wheat plants/m2 is required in WA for
each tonne of target GY (Anderson et al. 2004). However,
given the benefits of increased plant numbers for weed
management (Radford et al. 1980; Walsh and Minkey
2006) and the reduced crop establishment expected at
higher seed rates (Del Cima et al. 2004), the seeding rates
required for various GYs of wheat, for example, can be
estimated as in Table 1. It can be hypothesised that if a
seed rate of <100 kg/ha is used for a target GY of wheat of
4 t/ha, then plant numbers could be the factor that limits GY in
a given season. In addition, information from the current and
previous seasons about the likely weed burden can be used to
adjust the seeding rate.

This type of relationship also appears to apply to narrow-
leaved lupin (Lupinus angustifolius L.) in WA (French et al.
1994) and canola (Brassica napus L.) (Seymour 2011; French
et al. 2016; Roques and Berry 2016). This requires further
testing for a range of crop species relevant to the rainfed
agricultural regions because similar relationships may not hold
in other crops (Jettner et al. 1998). In all cases, the germination
percentage and average size of the seed to be sown should be
factored into the seed-rate decision (e.g. French et al. 1994).

Determination of fertiliser type and amount

For nutrients such as phosphorus (P), potassium (K) and sulfur
(S), soil tests taken before seeding are reliable indicators of
deficiency for plant growth and thus of the need for application
in the current season (Peverill et al. 1999; Fageria 2009). The
micronutrient status of the current crop is best assessed by
using plant tissue tests (Reuter and Robinson 1997), with
micronutrients applied as recommended (e.g. Graham
2008). If plant-tissue test results can be returned quickly
enough, these micronutrients can be applied as foliar sprays
during the season, thereby avoiding GY loss. Tests for P, S and
N can also be made and corrective fertilisers applied,
particularly for K and S (Anderson et al. 2015). However,

Table 1. Estimated plant populations and seed rates for wheat
according to target grain yield

Row spacing of 20 cm and average seed size of 35 mg are assumed for the
calculations

Target grain yield
(t/ha)

Target plants/m2

(plants/m row)
Establishment

(%)
Seed rate
(kg/ha)

1 50 (10) 85 21
2 100 (20) 80 44
3 150 (30) 75 70
4 200 (40) 70 100
5 250 (50) 65 135
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various commercial models are available for in-crop advice on
strategic applications of fertiliser. Commercial fertiliser
companies and government advisers use various (in-house)
models mainly for N applications (e.g. SyN and NPDecide) in
WA, and various models based on APSIM (Keating et al.
2003) are available for private agronomists and cropping
system advisors. The use and effectiveness of crop models
needs to be more widely and objectively assessed.

Tactical foliar application of nutrients

It is generally better to ‘feed the roots’ rather than the foliage,
although a few exceptions exist depending on soil conditions
(e.g. Ali et al. 2016). In order to clarify the role of foliar-
applied nutrients as a means of tactical management, it is
important to look at the crop’s entire nutritional requirements
(Franke 1967).

Foliar applications should not be relied on to correct
macronutrient deficiencies in rainfed cereal crops, because
soil-applied nutrients frequently give higher GYs (Seymour
and Brennan 1995; Abdul et al. 2012; Fernández and Brown
2013).

Phosphorus

Foliar application of P is not recommended anywhere in the
world, partly because the quantity of P needed, 10–20 kg/ha
(see Table 2), makes it difficult to apply as a spray. Chemicals
providing <5 kg P/ha rarely correct P deficiency. In addition,
some studies have shown that, although the timing of foliar
application with inclusion of a surfactant in the P solution is
important for absorption of P by wheat leaves, the improved
foliar uptake does not lead to an increase in GY (Fernández
et al. 2014; Peirce et al. 2019). Because P is required early in
growth and broadcast applications are frequently about half as
effective as drilled applications, fertiliser is best drilled at
sowing (Jarvis and Bolland 1990). The decision is thus a
tactical one made at or immediately before sowing.

Nitrogen

Foliar application of N to cereals has attracted considerable
attention (Reeves 1954; Finney et al. 1957; Gooding and Davies
1992), particularly applications close to flowering, which
increase the number or size of grains in the ear (Bly and
Woodard 2003). Urea (CH4N2O), urea–ammonium nitrate
(NH4NO3) solution mixture (UAN), ammonium sulfate
(NH4SO4), and ammonium nitrate can be applied as spray
solution (Fageria et al. 2009). However, the amount applied
for tactical N applications is limited to the maximum N
concentration that can be used without freezing pipes and
nozzles, rather than the chemical solubility of the N
compounds (~330 g urea/L water, 500 g ammonium nitrate/L
water). UAN is a solution containing 420 g N/L water. There is
little difference in GY when different N sources are compared

on the same rate of N applied (Fageria et al. 2009). Generally,
under rainfed conditions with terminal drought, low soil
moisture during grain-filling limits the potential for
increased GY from foliar N application; however, increases
in protein content of wheat grain after late application of foliar
N have been reported (Reeves 1954). In general, the tactical
(or split) application of granular fertiliser can be an effective
means of tactical management of N on neutral to acid soil types
(see below).

Potassium

If K deficiency is diagnosed by either plant tissue analysis
or visual symptoms, K fertiliser can be applied to the soil
surface 4–6 weeks after sowing. Foliar sprays generally do not
supply sufficient K to overcome a severe deficiency and can
scorch leaves of crops in some circumstances. Foliar-applied
K, along with other micro- and macronutrients, did not
increase the GY of narrow-leafed lupin in WA (Seymour
and Brennan 1995).

Some field experiments have evaluated the efficiency of K
applied as a foliar spray versus a soil application (John and
Lester 2011; Abdul et al. 2012; Ali et al. 2016; Farooqi et al.
2012). A foliar spray of 3% K was more efficient for increasing
growth and GY than soil application and fertilisation (Ali et al.
2016).

Sulfur

When S deficiency is observed or diagnosed by plant
analysis, the usual practice is to apply S fertiliser to the soil
surface (Brennan and Bolland 2008). In a 2-year study, Ozanne
and Petch (1978) measured GY increases of 22% following
foliar fertilisation with a mix of N, P, K and S. However,
Seymour and Brennan (1995) found that 4 kg S/ha applied
2 weeks after flowering reduced the GY of narrow-leaved
lupin by ~10% (300 kg/ha), despite no evidence of foliar
damage. Limited data are available on the effect of S foliar
spray for the other crop species grown in rainfed agricultural
regions.

Copper (Cu)

Foliar application of Cu can be useful up to flowering if a
deficiency has been diagnosed in growing plants (Gartrell
1981). Foliar spray usually contains 10–15 g CuSO4.5H2O/
L water. A single soil application of Cu at recommended rates
can provide a longer residual effect for the growing crop,
whereas foliar applications generally require consecutive
applications. However, foliar Cu sprays are seen as an
appropriate response if plant-tissue analysis during the
growing season has indicated a Cu deficiency (Gartrell
1981; Brennan 2000). Where crops are grown on subsoil
moisture, the topsoil where the Cu fertiliser is placed is
frequently dry and the fertiliser is unavailable to root

Table 2. Range of concentrations (kg/t) of nutrients found in wheat grain and straw in Western Australia

N P K S Mg Ca Cu Zn Mn

Grain 16–26 2–3.5 3–7 2–3 1–1.5 0.2–0.4 0.002–0.004 0.02–0.04 0.02–0.05
Straw 2–10 0.2–1.5 6–16 0.4–1.5 0.5–1 0.6–2 0.001–0.003 0.01–0.03 0.01–0.06

624 Crop & Pasture Science W. K. Anderson et al.



uptake, in which case foliar applications are more effective
(Gartrell 1981; Grundon 1980).

Zinc (Zn)

Severe Zn deficiency can affect young seedlings, usually in
the first 3–4 weeks following emergence (Brennan 1991).
Foliar application of Zn helps the remaining seedlings to
survive, even if a large percentage of the spray lands on the
soil surface. Effects on GY are minimised if foliar-applied Zn
is applied immediately symptoms are seen. In situations when
Zn deficiency is less severe, foliar sprays are required as soon
as symptoms appear or after plant-tissue analysis indicates Zn-
deficiency problems.

Manganese (Mn)

In some situations, a foliar spray of Mn is the most effective
treatment, particularly on highly alkaline soils (pH >8.5)
where Mn is less soluble (Gettier et al. 1985). In acid soils,
for example in WA, sporadic Mn deficiency occurs in gravelly
soils, particularly in drier growing seasons (Smith and Toms
1958; Brennan and Bolland 2011). Patches of crop displaying
Mn deficiency can be sprayed with MnSO4.5H2O, which is a
relatively cheap and effective source of Mn.

Manganese is required for the developing seed in pods of
narrow-leaved lupin and other grain legumes as the crops
mature. During this part of the growing season, the topsoil
is frequently dry, and soil-applied Mn is unavailable for uptake
by roots. Hence, a tactical Mn foliar spray is effective to
overcome Mn deficiency in lupin if the plant is sprayed when
the seed pods on the main stem are ~2.5–3.0 cm long. If
delayed beyond this time, Mn spraying is less effective
(Seymour and Brennan 1995). Manganese deficiency results
in split and shrivelled seed within the pods, resulting in GY
losses and decreased profits for producers.

Molybdenum (Mo)

Usually fertiliser application of 75–100 g Mo/ha lasts
~10 years in acidic sandplain soils (Doyle et al. 1965;
Brennan 2006). If Mo deficiency is diagnosed by plant-tissue
analyses in crops such as wheat, barley (Hordeum vulgare L.)
or canola, a solution of sodium molybdate (Na2MoO4, 39%
Mo) or ammonium molybdate ((NH4)6Mo7O24, 54% Mo)
applied to the leaves of the plants corrects the deficiency
when applied at rates of 0.20–0.40 g ammonium or sodium
molybdate/L water. For example, tactical application of foliar
Mo sprays at mid-flowering of 40 g Mo/ha overcame Mo
deficiency for canola grain production (Brennan and Bolland
2011). However, higher foliar rates of 50–150 g/ha of the Mo
sources are recommended for some crop species (Bell and Dell
2008).

Liming (CaCO3) may be required to ameliorate soil
acidification in some regions, and this will also alleviate
Mo deficiency induced by soil acidification if sufficient
lime is added to raise the pHCa of the top 10 cm of soil to
�5.5 (Brennan and Bolland 2011). If deficiency of Mo is
diagnosed for crops grown on acidic soils, a foliar spray is
fully effective if applied at ~20 g Mo/ha.

Boron (B)

Boron deficiency is rare in wheat and other cereals
(Brennan et al. 2015). In addition, species with a higher
requirement for B (e.g. canola and lupin) are usually
adequately supplied in the soils of WA, even where soil
extractable B levels are low (~0.003 g B/kg in CaCl2
extractant). However, the redistribution of foliar-applied B
to actively growing young tissues that require B for growth is
limited in most crop species, except lupin. Thus, foliar
application of B is of limited use for most crop species
even if B deficiency is diagnosed. This suggests that critical
soil-test concentrations for crop production need to be defined.

If B deficiency is diagnosed by plant-tissue analysis, B can
be sprayed at 0.1–0.5 kg B/ha at the flag leaf stage (Z37–41;
Zadoks et al. 1974) to increase GY by reducing pollen sterility
(Dell et al. 2002). However, application of B fertiliser,
particularly borax (Na2(B4O5(OH)4).8H2O), can reduce
germination and seedling density (Brennan et al. 2015).

Removal of nutrients

One guide for determining rates of fertiliser application needed
in the current season is to estimate the likely amount of each
nutrient removed in the grain (for wheat, see Table 2; after
Gartrell and Bolland 2000). The target GY can then be used as
the starting point for estimating fertiliser application rates. Soil
type, previous crops and seasonal conditions need to be
considered, and local experience at the farm or paddock
level, in combination with soil and/or tissue tests, is often
used to ‘fine-tune’ these decisions (e.g. the use of test strips
when applying nutrients diagnosed as potentially deficient).
Adoption of variable-rate fertiliser technology (Robertson
et al. 2012) can be a further aid in optimising costs and
returns where several sources of information need to be
considered.

Tactical N application

Several forms of N have been assessed for tactical application
in field experiments in WA, including urea, ammonium nitrate,
ammonium sulfate, calcium ammonium nitrate (variable
formulations) and anhydrous ammonia (NH3) (Mason 1968,
1977). The composition of these N fertilisers and current costs
should be compared on cost per unit N (Mason 1968, 1977);
however, urea is usually the most cost-effective N source for
tactical applications. The main benefit of N is to increase the
number of ears per ha in cereals (Simpson et al. 2016), and the
greatest benefit is achieved by applying the N early, especially
in short-season environments, so that tillering can be increased
(Littler 1963; Ellen and Spiertz 1980). However, the optimum
tactic recommended for timing of N applications to annual
crops varies, especially according to soil and rainfall
conditions (Nordblom et al. 1985; Ladha et al. 2005).
Application of N at sowing appears preferable where the
crop is grown largely or partially on stored soil water
(Cooper 1974). Application before expected rainfall in
addition to a dose of N at sowing also appears
advantageous where the soils are unlikely to be prone to
nitrate leaching (Anderson 1985; Angus and Good 2004;
Simpson et al. 2016). In temperate environments with cold
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winters and relatively reliable precipitation, an appropriate
tactical management is to apply the N fertiliser according to
the growth stage of the crop (Ellen and Spiertz 1980;
Christensen and Mients 1982; Tosti et al. 2016). The N
status of the crop can be compared with ‘adequate’ levels
from tissue tests as described for local conditions (e.g. Reuter
and Robinson 1997; Simpson et al. 2016). In the high-rainfall
zone of the south of WA, where the topsoils are often sandy
and the rain is concentrated in the growing season, it may be
appropriate to replace losses due to leaching- and/or
waterlogging-induced denitrification after heavy rain events
(Simpson et al. 2016). Estimates of crop N status in the field
have been developed by using methods involving crop-canopy
reflectance, leaf transmittance and chlorophyll concentration
(Muñoz-Huerta et al. 2013). Many commercial, ground-based
methods (i.e. Yara N-Sensor, GreenSeeker, CropScan) and
satellite-mounted sensors (i.e. QuickBird) measure crop-
canopy reflectance in the visible and/or infrared wavebands
for the purpose of estimating N in plants (Li et al. 2010;
Vigneau et al. 2011). There is a paucity of data for
rainfed crops, and this study suggests that further research
is required. The application of tissue tests as an aid in assessing
fertiliser requirements can be complicated by competition
from weed species such as annual ryegrass (Lolium rigidum
Gaud.) (Palta and Peltzer 2001).

From a tactical management perspective, the total amount
of N required to satisfy the target GY can be estimated at
sowing. For example, using information from Gartrell and
Bolland (2000), a 4-t crop of wheat would contain 64–104 kg
N in the grain and a further 8–40 kg in the straw (Table 2). Part
of the total N required can then be applied at sowing, and the
remainder applied according to the preferred tactics depending
on the soil and weather conditions. One advantage of this
application system is that the later applications can be withheld
if seasonal conditions do not meet expectations and the
probability of reaching the target GY is reduced (Seymour
et al. 2016; Simpson et al. 2016), or if the chance of ‘haying
off’ is increased (van Heerwaarden et al. 1998).

Use of tillage in tactical management

Full (mechanical) tillage, which is a tactical means to address
short-term issues, is considered one of the oldest methods for
controlling weeds, pests and diseases (Yenish et al. 1992;
Horne and Page 2008; Franzluebbers et al. 2011). Disturbance
of the soil profile and the removal (by incorporation) of surface
plant residues eliminates suitable shelter and host plants for
pests (e.g. snails) and reduces the risk of stubble-borne
diseases such as net-type net blotch (Pyrenophora teres f.
teres) and spot-type net blotch (P. teres f. maculata) (Jayasena
and Loughman 2001; Horne and Page 2008; Le Gall and
Tooker 2017). Tillage distributes weed seeds throughout the
tilled soil layer, with the highest concentration of weed seeds
generally in the 0–5 cm soil layer (Franzluebbers et al. 2011).
Seeds of common weeds buried deeper than 10 cm often
germinate if sufficient soil moisture is present but they
usually fail to emerge. Tillage can stimulate mass
germination of weeds such as annual ryegrass and wild oats
(Avena fatua L.), allowing control of these seedlings with a

single herbicide application before crops are sown (Madin
1993; Franzluebbers et al. 2011). Full tillage is no longer
practiced in many rainfed agricultural areas (e.g. Llewellyn
and D’Emden 2009; Yigezu et al. 2014; Loss et al. 2015),
although it does have a place in treating soil compaction
(Hamza and Anderson 2005) and managing certain weed
species (see below), and it may be used to achieve the
above benefits.

Currently, farming systems in the south of WA use
minimum or no tillage techniques, and �30% of plant
residues are retained on the soil surface to reduce water and
wind erosion (Derpsch 2003). However, retention of crop
residues in rainfed cropping systems in Australia and
elsewhere does not appear to have had unequivocal benefit
for crop GYs (Scott et al. 2010; Loss et al. 2015). We conclude
that further research is required to delineate clearly the
separate effects of reduced tillage and residue retention and
to establish the appropriate conditions for full soil disturbance
across a range of cropping situations.

The adoption of minimum or no tillage and stubble
retention as part of a system of conservation cropping can
increase the disease load in paddocks, where some diseases
such as such as spot-type net blotch of barley can persist on
stubbles such that >2 years is required to reduce the disease
burden of the stubble effectively (Jayasena and Loughman
2001). If seeding occurs in ungrazed pastures or if the
preceding cereal GY was >1 t/ha, then tillage may still be
an option. According to Leonard (1993), cereal paddocks with
theseGYs are likely to have residues >1.4 t/ha, which contributes
to poor crop establishment in the following year. On the positive
side, tilling the paddock requires no removal or management of
stubble andmay lead to better crop establishment. The decision to
use deep tillage (inversion ploughing or deep ripping) has often
been made by farmers inWA after testing for soil compaction by
using an improvised, pointed steel rod.

The impact of tillage systems on soil compaction and its
treatment across common soil types has been studied in WA
(Hamza and Anderson 2003), with the roles of deep ripping
and gypsum application measured. There is probably a further
requirement to examine the effects of these strategic practices
and their possible interaction with the tactical practices
discussed here.

Tactical applications of crop rotation

Crop rotations in which a pasture, pulse or oilseed crop is
grown after a cereal crop can significantly influence a range of
factors including changes in soil N and management of pests,
weeds and diseases. Fixed rotational systems are rarely used,
with the final choice influenced by several considerations
including short-term fluctuations in commodity prices for
grains and livestock (Lawes 2015; Lawes and Renton
2015). If consideration is given to the value of grain from
the different crops that are compared in this paper, canola had
the highest average price in 2019, at AU$601/t, followed by
lupins ($430/t), wheat ($309/t) and barley ($233/t) (Grain
Central 2019; Cargill 2020a, 2020b, 2020c). Given the
relative prices and expected grain yields of the crops, it is
often profitable to have canola in the cropping rotation despite
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its susceptibility to pests, increased input costs and
environmental risks (Kirkegaard et al. 2016).

Decisions regarding crop sequences can be made
immediately before seeding, but some of the inevitable
interactions with the longer term strategic decisions are worth
discussing. Canola is often grown as the first crop after a pasture
to control weeds and diseases before the cereal phase
(Kirkegaard et al. 2016). However, pastures sustain higher
numbers of pests such as earth mites and weevils that can
damage the following seedling canola crop, leading to
increased insecticide usage (Micic 2005; Horne and Page
2008). In recent years, the frequency of canola has increased
in the rotation, with a similar decrease in pastures, especially in
WA. This increase in canola has reflected its profitability as a
commodity in its own right as well as a strategy to control
weeds and diseases for the following cereal crops (ABARE
2017). The reduced time between canola crops has led to an
increase in stubble-borne diseases such as blackleg
(Leptosphaeria maculans), increases in applications of N
and of herbicides to control weeds in the canola phase (see
Kirkegaard et al. 2016), and increased insecticide usage
(Macfadyn and Hill 2017). Where the goal is to maximise
profits, there is a need to consider an integrated approach for
the management of disease, weeds, pests and fertiliser
applications (Brennan 1989; Bockus and Claassen 1992;
Doole and Weetman 2009; Nichols et al. 2009, 2012).

In WA, disease risk for barley is increased if the crop is
grown at intervals of <4 years, but it is more profitable to grow
barley with a 2–3-year rotation even if stubble-borne diseases
such as spot-type net blotch are an issue (Jayasena and
Loughman 2001). Currently, the disease risk for short
rotations is high, and this is managed through the use of
fungicides to decrease stubble-borne diseases. However,
repeated applications of fungicides increase the risk of
resistance developing in the disease pathogen. For example,
malting varieties of barley have poor resistance to powdery
mildew (Blumeria graminis f. sp. hordei), but owing to market
demand, these varieties are most commonly grown with
triazole-based seed-dressing fungicides. The pathogen has
now developed resistance (Tucker et al. 2015), and this can
reduce GY by up to 40% if infection occurs before flag-leaf
emergence and up to 25% if infection occurs after this time.

Management of the ‘green bridge’

Mixed-farming enterprises commonly leave volunteer plants
and weeds intact for grazing by livestock during the pre-crop
period (hence the ‘green bridge’). This practice has
implications for insect, disease and weed management
(Coutts et al. 2018). Feeding of livestock on green weeds
and crop stubble can decrease (but not eliminate) disease
inocula of, for example, air-borne diseases such as barley
leaf rust (Puccinia hordei). However, this practice can lead
to a decrease in the amount of standing stubble, leading to
germinating crops being more susceptible to colonisation by
aphids (Jones 1994; Coutts et al. 2015).

The success of herbicide applications in controlling a green
bridge depends on the weed seedbank that may germinate with
subsequent rainfall events, as well as the size of the weeds

present at emergence (Walsh et al. 2004; D’Emden and
Llewellyn 2006; Bastiaans et al. 2008). In addition, a green
bridge depletes the available stored soil moisture for the
subsequent crop (Walsh et al. 2004; Bastiaans et al. 2008).
Application of non-residual herbicides may be needed after
each germination of weeds; residual herbicides are not
commonly used for summer weed control.

The timing of herbicide applications to control the green
bridge is important for reducing numbers of pests and can be as
effective as an insecticide application (Macfadyn and Hill
2017). However, the optimum time to apply herbicides is
�14 days before seeding (Coutts et al. 2015). This will
lead to a fallow period of at least 10 days before crop
emergence, thereby reducing pest numbers. Fast-acting
herbicides may be required where timings are tight so that
the fallow period is sufficient to stop pests such as aphids or
mites transferring from dying plant hosts onto germinating
crops.

Weed management

Weed-management decisions are driven mainly by the
economic impact of the weed on the current crop,
the impact it may have on the following crop, and the
propensity for the particular species to develop resistance to
common herbicides. The impact on the current crop can be due
to competition (e.g. annual ryegrass, Moore 1979), reduction
of available soil moisture (e.g. summer weeds), or
grain contamination (e.g. by seeds of wild radish
(Raphanus raphanistrum L.) or sclerotium of ergot of rye
(Claviceps purpurea)). Thresholds are used to determine when
control is required. Weed control based on the impact on
following crops is driven by the fact that it is often easier
and less costly to control grasses in broadleaf crops, and broad-
leaved species in cereal or grass crops. Thus, higher levels of
control of wild radish in cereals may be practised if a legume
or Brassica crop is following. Similarly, high levels of grass
control may be practised in broadleaf crops if a cereal crop is
planned for the following year. Resistance is another important
factor in decision making, especially for annual ryegrass,
brome grass (Bromus rigidus Roth.) and wild radish. In
these cases, growers often opt for maintaining very low
levels of the weed in continuous cropping fields in order to
reduce the risk of developing resistance to the most economic
herbicides.

Overall, the weed species in agricultural ecosystems in
rainfed temperate environments tend to be a mix of species
of Poaceae (grasses), Asteraceae (daisies and thistles),
Brassicaceae (radish, turnips and mustards) and Fabaceae
(clovers, medics and grain legumes) (Moore and Wheeler
2020). Profitable crops also tend to come from these
families, with wheat, oats (Avena sativa L.) and barley
from the Poaceae family, canola from the Brassicaceae, and
lupins, peas and beans from the Fabaceae. Because these crops
are often rotated, the major weeds are often volunteers from
the previous crop in addition to the naturalised species (green
bridge). In Australia, native plant species are rarely weeds of
winter crops but can occur as summer weeds (Moore and
Moore 2020).
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Because elimination of all weeds and their seeds seldom
occurs in the previous growing season, tactical weed
management is essential for each growing season and for each
crop species. This includes cultural treatments such as
cultivation, burning, weed-seed collection at harvest,
grazing, rotation and fallow, in addition to herbicide
treatments (Dodd et al. 1993; Seymour et al. 2012; Walsh
et al. 2017). Insofar as weed management has a tactical
component, it can be guided by knowledge of the weed
population in the year before cropping and by observation
of weed-seedling emergence after the opening rains in the
current season (Dodd et al. 1993).

Growers may wait for emergence of weeds before spraying
with non-selective (knock-down) herbicides if there is an early
break to the season. This application may be repeated in
3–14 days with a follow-up spray before sowing the crop.
If there is a late break to the season, growers may sow the crop
before the rains arrive (dry seed) and apply residual herbicides
before sowing or after sowing and before crop emergence.
Selective herbicides can then be used once the crop has
established. In these situations, growers may also opt to
switch to herbicide-tolerant crop varieties so that
glyphosate, imidazolinones or triazines may be applied to
the crop after emergence. The particular herbicides used
depend on the crop, weeds, tillage system (as some
herbicides require incorporation), and resistance status of
the weeds—in particular annual ryegrass, which has
widespread resistance to the Group A (‘fop’ and ‘dim’
grass-selective) and Group B (sulfonylurea broad-spectrum)
herbicides. Typical mixtures and sequences of herbicide
application are summarised for the major crops in
‘Favourite Brews 2020.pdf’ in Moore and Moore (2020). In
most cases, this will include herbicides that provide good
control of weeds from the Asteraceae, Brassicaceae,
Fabaceae and Poaceae families. Computer models such as
HerbiGuide and HerbiRate are used tactically to adjust
herbicide selections or rates of application on the basis of
local conditions (Moore and Minkey 1997; Moore and Moore
2020). Several other models are rarely used by growers but are
good educational aids to demonstrate principles of weed
control and agronomic interactions (e.g. Legizamon et al.
1980; Grundy and Mead 1998; Monjardino et al. 2003;
Jones et al. 2005; Somerville et al. 2018).

Biological control agents have been released against
several weeds with varying effects. Common heliotrope
(Heliotropium europaeum L.), doublegee (Emex australis
Steinh.), fiddle dock (Rumex pulcher L.), Paterson’s curse
(Echium plantagineum L.), skeleton weed (Chondrilla
juncea L.) and various thistles are agricultural weeds that
have been targets for bio-control, using a range of agents
including rusts, beetles, mites, midges, moths, flies and
weevils (Dodd et al. 1993). Because their level of bio-
control varies from season to season, tactically applied
supplemental control is often used. This area needs further
investigation.

Minimum tillage is the most common planting practice in
broadacre, rainfed cropping systems in Australia (Anderson
et al. 2005). This can be related to various combinations of
increasing costs of cultivation; decreasing costs of herbicides,

insecticides and fungicides; larger farm sizes and machinery;
risks of erosion; and difficulty in attracting labour during peak
periods. However, it may complicate weed management.

Management practices

Tactical practices may include:

* Changes in weed control in leguminous crops and pastures
based on price movements of N or grains.

* Changes in weed control so as to vary the carryover of weed
seed into the following season, based on changes in
predicted relative prices of crops versus livestock in the
following season where crop weeds are the main pasture
species.

* Timing of weed control, with early control generally giving
higherGY than late control. Seasonal conditionswill influence
timing and products used for early control, and late
germinations of weeds that cause grain contamination may
necessitate a later spray.

* Herbicide rate adjustment to take account of current
environmental conditions (Minkey and Moore 1996) or
weed density (Moore and Moore 2020).

* Use of a ‘base recipe’ for the crop (Moore andMoore 2020) or
advice from a consultant. Many growers then adjust this for
tactical management of specific weeds or where herbicide
resistance occurs. The base recipe usually contains herbicides
or practices that control the major families of weeds to reduce
the risk ofminorweeds predominating in response to theweed
control implemented.

Both pre-emergent and post-emergent herbicides are
extensively used as are residual and non-residual herbicides
in the Australian rainfed cropping systems (Moore and Moore
2020).

Pre-seeding and pre-emergent practices

In addition to practices of summerweed control and reduction of
the green bridge to conserve moisture and reduce effects of
disease, insect and allelopathy, several tactics are imposed close
to seeding.

Growers generally wait for a germination of weeds before
sprayingwith glyphosate, or less commonly, theyuseparaquat or
paraquat + diquat mixtures as the knock-down herbicide.
Trifluralin is often added as a pre-emergent herbicide before
seeding common crops such as cereals, canola or legumes.
Atrazine and simazine are commonly used residual herbicides
before seeding lupins and triazine-tolerant canola.
Imidazolinone herbicides are used on Clearfield varieties of
cereals and canola, and various speciality herbicides are used
in crops such as chickpea (Cicer arietinum L.), faba bean (Vicia
faba L.) and lentil (Lens culinaris Medik.) (Moore and Moore
2020). In paddocks with a high weed burden, a shallow
cultivation may be used to encourage the weeds to germinate,
thereby allowing greater control with the knock-down
herbicides.

If the rains at the start of the season are ‘late’, the tactics
used include seeding crops into dry soils with knock-down
herbicides, replaced by residual herbicides such as atrazine
for triazine-tolerant varieties of canola or imidazolinone
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herbicides for Clearfield or imidazolinone-tolerant varieties.
Cereals and conventional varieties of canola may be sown
following the application of trifluralin herbicide, and a tactical
decision may be made to add a more soluble product such as
metolachlor or to top-up after the rains. Where herbicide
resistance is found, active ingredients such as pyroxasulfone
(Sakura, Bayer CropScience) may be substituted for trifluralin
before seeding cereals (Moore and Moore 2020).

Post-emergent herbicides

Various post-emergence selective herbicides are commonly
used in cereals, and many contain MCPA (a Group I herbicide)
mixed with products such as bromoxynil, diflufenican,
picolinafen, terbutryn, pyrasulfotole, linuron or diuron, from
other herbicide groups (Moore and Moore 2020). The choice
of herbicide is usually a tactical decision based on the species
and densities of the weeds present at the two-leaf to tillering
stages of the crop.

Hormone herbicides such as 2,4-D are still widely used,
whereas the use of Group B herbicides has decreased as
herbicide resistance in the major weeds (i.e. annual ryegrass
and wild radish) has developed (e.g. Owen et al. 2014). Most
growers will inspect the crop at 6–8weeks after germination and
make a tactical decision on the need for follow-up herbicide
application based on the degree ofweed control achieved and the
level of late germinations.

Many growers have management practices in place to
reduce the risk of herbicide resistance developing. These
practices include rotating between herbicide groups, using
non-chemical methods of weed control, maintaining low
weed densities, sowing clean seed, and actively controlling
patches of weeds that appear to be resistant. About three-
quarters of annual ryegrass populations are resistant to
commonly used Groups A and B herbicides (Owen and
Powles 2018). In paddocks with high weed burdens,
glyphosate-tolerant canola varieties may be planted and
glyphosate applied post-emergence. Failures of weed
control due to resistance are usually remedied with tactical
application of an alternative herbicide, or a decision to cut the
crop for hay rather than allowing it to progress to grain harvest.

Non-chemical weed control

Non-chemical methods for weed management include:

* Tactical shallow cultivation to encourage weed germination
when the break of the season occurs at least 1 week before
the planned planting date.

* Inversion (mouldboard) ploughing in areas with high levels
of herbicide resistance, or in combination with other
practices such as the redistribution of nutrients and lime
or reducing non-wetting.

* Concentration of chaff and harvested weed seed into narrow
windrows behind the harvester.

* Tactical burning of stubbles or harvest windrows when
conditions allow.

* Weed-seed collection at harvest by using chaff carts or
stubble balers, based on the weed-seed set in the paddock
or price of stubble.

* Harvest weed-seed control, using various machines that
damage seed as it leaves the harvester (Walsh et al. 2017).
These are turned off in areas that are relatively weed-free.

Herbicide resistance

Owen and Powles (2018) have reported high levels of
resistance to Groups A and B herbicides in ryegrass and
wild radish in many cropping areas of Australia.
Populations resistant to other commonly used herbicide
groups also occur, but at very low levels. Tactical decisions
are taken to manage these populations with other herbicides or
control methods (Dodd et al. 1993). Despite high levels of
resistance, growers are maintaining adequate levels of weed
control (Owen and Powles 2018). Many growers have adopted
practices that are applied tactically over the cropped areas to
minimise the risk of herbicide resistance.

Other factors influencing weed control decisions

Tactical control of particular weeds is practiced for a variety of
other reasons in rainfed agricultural systems including:

* Control of capeweed (Arctotheca calendula (L.) Levyns),
thereby reducing the effects of redlegged earth mite
(Halotydeus destructor (Tucker)) and vegetable weevil
(Listroderes difficilis (Germain)) on canola.

* Control of small crumbweed (Dysphania pumilio (R.Br.)
Mosyakin & Clemants) and stinkwort (Dittrichia graveolens
(L.) Greuter) to reduce allelopathy in following crops (Moore
and Moore 2020).

* Summer weed control to conserve soil moisture (Bastiaans
et al. 2008), reducedisease levels, and reduce insects including
caterpillar pests such as pasture webworm (Hednota spp.),
mites and molluscs.

In conclusion, we argue that growers are managing weed
populations to levels that are not having a major impact on
GY. Further research on optimising weed control would lead to
greater profitability, because many weed-control decisions are
driven by risk aversion rather than cost effectiveness.
Biosecurity is an area that also requires ongoing support to
protect the industry from new threats such as Star of
Bethlehem (Ornithogalum umbellatum L.), three-horned
bedstraw (Galium tricornutum Dandy), skeleton weed
(Chondrilla juncea L.) and other undetected species.
Although there are policies to control new invasive species,
rapid tactical responses are required on discovery. Market
access also needs continuing research to ensure that residue
levels of herbicides and pesticides are kept at acceptable levels
and other contaminants such as ergots and ryegrass toxicity are
minimised.

Insect pests

Tactical management of insect pests relies on frequent field
observation in the current season (counts of invertebrate
numbers and/or damage assessments to plants) when
weather conditions are likely to favour the pests, and use of
control measures when thresholds are reached. Some
thresholds can be related to environmental conditions that
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favour multiplication of some insect species (Nichols et al.
2009).

Current pest-management practices in commercial systems

Tactical control of agricultural pests in Australian pastures and
cropping environments relies heavily on pesticide applications
(Micic et al. 2008; Umina et al. 2011), which are routinely
applied as a prophylactic spray for the control of pests
regardless of pest densities (James 2000; Macfadyn and Hill
2017). In WA, prophylactic sprays tend to be applied with
herbicide applications either pre-seeding or before crop
emergence, in order to control potential early-season pests
(Gu et al. 2007; Micic et al. 2007; Lawrence 2009).
Dependence on pesticides for insect control is not a new
phenomenon. In 1959, VM Stern and colleagues (cited in
Stern 1973) highlighted that insecticides were being applied
without any understanding of the density at which pests caused
economic injury to crops.

Thresholds that have been developed for pests of rainfed
crops can be used to determine whether a pest needs to be
controlled. If thresholds are used in combination with
biological, cultural and chemical controls to decrease pest
densities (i.e. integrated pest management, IPM), then

pesticides are applied only when pest numbers exceed
economic thresholds (Fick and Power 1992; Flint and
Gouveia 2001; Flint et al. 2003; Edwards et al. 2008;
Horne and Page 2008). However, the uptake and use of
thresholds by farmers depends on the threshold being based
on current research and taking into account the crop’s ability to
tolerate damage. If the assessment methods needed to monitor
for the threshold are too time-consuming, then prophylactic
insecticide applications are more likely to occur (Gu et al.
2007; Leather and Atanasova 2017; Ramsden et al. 2017).
Thresholds for some pests are shown in Table 3. In some cases,
there are a number of thresholds for the same pest in the same
crop, highlighting the need for a more coordinated approach
for determining thresholds (e.g. Ramsden et al. 2017).

Integrated pest management

Reviews of IPM in Australia highlight its success in
controlling pests in cotton and horticulture (see Williams
and Il’ichev 2003; Gu et al. 2007; Horne et al. 2008; Hoy
2011). However, there are very limited examples of its success
as a tactical management method in rainfed agriculture
(Hoffmann et al. 2008). Horne et al. (2008) suggest that
one of the factors responsible for poor adoption of IPM is

Table 3. Some insect pests of rainfed crops and their control thresholds

Pest group Species Threshold Citation

Canola
Acarina: Penthaleidae Redlegged earth mite, Halotydeus

destructor (Tucker)
10 mites/plant with a true leaf Arthur et al. 2015

Collembola: Sminthuridae Lucerne flea, Sminthurus viridis (L.) 10 holes/leaf Macfadyn and Hill 2017
Homoptera: Aphididae Cabbage aphid, Brevicoryne

brassicae (L.); turnip aphid,
Lipaphis erysimi (Kalt.)

20% of racemes with aphids Edwards et al. 2008

Lepidoptera: Plutellidae Diamondback moth, Plutella
xylostella (L.)

200–300/m2 at flowering and podding Dosdall et al. 2011
2–3 larvae/plant at podding Canola Council of Canada 2014
100 larvae/10 sweeps at flowering, 200

larvae/10 sweeps at podding
Micic 2005

Wheat and barley
Homoptera: Aphididae English grain aphid, Sitobion avenae

(Fitch); rose-grass aphid,
Metopolophium dirhodum
(Walker)

2–4 aphids/tiller at flowering, 6–10
aphids/tiller up tomilky ripe stage,�10
aphids/tiller from milky ripe to
medium-dough stage

Johnston and Bishop 1987

Corn aphid, Rhopalosiphum maidis
(Fitch); oat aphid, Rhopalosiphum
padi (L.)

50% of tillers with �15 aphids Michael 2002

Sitobion avenae 5 aphids/ear before flowering or 75% of
tillers infested

Dewar 2017

Prevention transmission of virus by
Sitobion avenae, Rhopalosiphum
padi

Spray if aphids present Ramsden et al. 2017

Rhopalosiphum maidis,
Rhopalosiphum padi

If virus risk is high, use seed dressings or a
two-spray tactic

Michael 2002

Lepidoptera: Noctuidae Southern armyworm, Mythimna
convecta (Westwood); sugarcane
armyworm, Leucania stenographa
(Lower); southern armyworm,
Persectania ewingii (Westwood);
inland armyworm, Persectania
dyscrita (Common)

Barley: 3 large caterpillars/m2 at head
ripening

Grimm 1995

Wheat: 10–25/m2 Moore and Moore 2020

630 Crop & Pasture Science W. K. Anderson et al.



that researchers have concentrated on a single pest and have
not dealt with all of the pests in a crop. They also found that
growers did not have the confidence to not apply a spray
application for pests in crops such as canola and legumes.

For early-season pests (i.e. pests that affect crops at the
seedling stage), the disadvantages of using a single ‘count’
threshold for a single pest can be overcome by applying an
insecticide based on the amount of plant damage occurring to
the crop at establishment (~14 days after germination) (e.g.
Arthur et al. 2015). This approach relies on identifying pests
that are present in a paddock from their feeding damage to the
crop, and then applying an appropriate insecticide only if the
crop is likely to fall below the optimum density for GY. For
instance, for canola the target density should not be <20 plants/
m2 (DPIRD 2019), for narrow-leaved lupin 35 plants/m2

(O’Connell et al. 2003), for barley 120/m2 (Paynter et al.
2019), and wheat 100 plants/m2 (Anderson et al. 2004)
depending on target GY (see Table 1).

However, this approach requires use of a higher seeding
rate to allow for some seedling loss. For instance, before
hybrid canola seed was available, the recommendation was
seeding at 5 kg/ha to establish ~50 seedlings/m2 (Micic 2005).
However, the cost of hybrid canola seed is $34–48/ha, based
on a seeding rate of 2 kg/ha (Seymour 2011), which leaves
only 30 seedlings/m2. Optimal seedling density is 25 plants/m2

with conventional varieties and �30 seedlings/m2 with hybrid
varieties (Seymour 2011). Consequently, a prophylactic spray
of a-cypermethrin at 400 mL/ha, which costs ~$4.00/ha
(Moore and Moore 2020), is an attractive option compared
with reseeding a crop or increasing the seeding rate.

Tactical management for late-season pests such as diamond
back moth (Plutella xylostella (L.)) and the armyworm
complex (see Table 3) relies on monitoring crops until it is
too late in the season to apply insecticides before harvest
(Miller and Pike 2002; Floate and Hervet 2017). Crop
monitoring can be time-intensive. The use of sweep nets to
detect the presence of lepidopterous pests is a more time-
efficient method than observing single plants. However,
sweep nets are limited to the edges of crops such as canola
owing to the difficulty of entering the crop at flowering
(e.g. Floate and Hervet 2017). Sweep-net counts cannot be
related to the density of the pest per plant (e.g. Dosdall et al.
2011); consequently, for the same pests there are different
thresholds based on the monitoring technique used (see
Table 3). The timing of crop monitoring needs to coincide
with the presence of the pest in the landscape. This knowledge
can be achieved through the use of pheromone traps or
forecasting based on environment (e.g. Thackray et al.
2004; Harrington et al. 2007; Dosdall et al. 2011).

Timing of insecticide applications

Insecticides are usually applied when pests either cause
sufficient plant loss or are at a threshold to cause yield loss.
However, by understanding the lifecycle of pests, tactical
control measures can be applied to suppress populations
before egg laying occurs. For instance, the pest species
most damaging to germinating canola in WA was the

redlegged earth mite (Ridsdill-Smith et al. 2008). This mite
hatches from over-summering eggs when there is sufficient
moisture and when at least 7 days have elapsed with mean
temperatures <20.58C, with peak hatchings occurring in mid-
May (Wallace 1970). This can coincide with the germination
of seedling crops such as canola (Kirkegaard et al. 2016). One
of the main recommendations for the suppression of redlegged
earth mite for a pasture–canola cropping rotation is to apply
control measures to pasture during spring. The timing of this
spray will kill the female mites before over-summering eggs
can be produced (Ridsdill-Smith et al. 2008) and leads to lower
mite numbers in the following canola crop. However, in WA
there has been a move from seeding canola in June to earlier in
April (Glen 2000; Kirkegaard et al. 2016) so that crop
germination is less likely to coincide with peak hatchings of
redlegged earth mites.

However, early-autumn sowing means that temperatures
can be milder and pests such as aphids (e.g. green peach aphid,
Myzus persicae (Sulzer)) that are usually found in crops in
spring are now present on seedling canola (Coutts et al. 2015;
Macfadyn and Hill 2017). Aphids such as green peach aphid
are resistant to many insecticides and can spread Turnip
yellows virus, causing GY losses of 30% in canola crops if
infected at the seeding stage (Coutts et al. 2015; de Little et al.
2017). Instead, the use of insecticide seed treatments is
recommended to decrease the incidence of this aphid pest
spreading virus to germinating crops (Coutts et al. 2015).

The use of insecticide seed treatments as a tactic to suppress
pests has very low non-target effects and is compatible with an
IPM framework (Williams 2017). However, insecticide seed
dressings can have limitations in protecting seedlings from
pest damage if pest numbers are high. For instance, seed
dressings containing the active ingredient imidacloprid are
only successful if mites such as redlegged earth mite are
present in low densities (i.e. at thresholds of 10 mites/
100 cm2) (Horne and Page 2008; Moore and Moore 2020).

Varietal selection

Selection of varieties that are resistant to pests and diseases is
an important tactical management practice. Some crop
cultivars have aphid resistance (e.g. Adhikari et al. 2012;
Brewer et al. 2019); however, to date there are no
commercialised varieties of canola, cereals or lupins with
resistance to herbivorous invertebrates. There is some
evidence that different varieties have different tolerances to
damage (e.g. Liu and Ridsdill-Smith 2001). Even so, if crop
varieties are chosen that match the predicted growing season
and have good disease tolerance, crops are likely to be healthy
(Williams 2017) and thus more likely to outgrow feeding
damage, especially from establishment pests.

Implications for grain contamination

Invertebrate contaminants do not cause any injury to the grain
but are incidentally harvested with the grain. There is a need to
ensure high-quality grain for export; therefore, grain receival
points have limits on the amount of contaminants. If this limit
is exceeded, growers must arrange for their grain to be cleaned
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(Moore et al. 2019), an expense that is picked up directly by
the grower. A tactical response to decrease contamination risk
is to change time of harvest or harvest technique. For instance,
if harvest occurs in the middle of the day when invertebrates
are not actively moving there is less invertebrate
contamination of grain; if crops are direct-harvested and not
swathed, there is less contamination (Micic and Michael 2005;
Micic et al. 2006).

Future implications for pest management

In dry conditions, farmers are more likely to dry-seed crops,
with germination occurring as soon as there is sufficient soil
moisture; this is a widespread practice in low-rainfall areas
globally (ABARE 2017). Crops germinate with the first
opening rains, which can coincide with warmer weather,
leading to potentially moisture-stressed crops that are more
susceptible to pest damage if insufficient follow-up rainfall
occurs. Currently, the only tactical option if crop loss is
occurring is to apply insecticides.

Longer term strategic management needs to focus on
suppressing pest populations before they can cause crop
damage regardless of the season. This can be achieved only
by using cultural controls and requires forward planning because

it cannot be applied in the year that economic damage is
observed. Routine prophylactic spraying will increase the risk
of insecticide resistance. This may be addressed by further
research and extension on the economic effect of invertebrate
pests on GYs and the efficacy of control measures.

Disease management

Management of the common diseases of the principal crops
produced in winter-dominant rainfall regions often involves
both tactical and strategic practices. Soil-, stubble- and air-
borne diseases affect cereal crops grown in rainfed agricultural
regions. The leaf diseases mostly require high humidity and
either rainfall or dew on the leaves for germination of disease
spores when the atmospheric temperatures are optimum, and
wind for dispersal of spores (e.g. Jeger et al. 1981; Te Beest
et al. 2008). Some examples are shown for barley
(Table 4) and wheat (Table 5), indicating the specificity of
the various diseases and the tactical management for them.
Awareness of these factors is important for effective disease
management tactics, but this may be further complicated by
the different responses of some genotypes to environmental
factors (Hogg et al. 1969; Garrett et al.2006).

Table 4. Optimum conditions for infection of common leaf and stem diseases of barley and some methods used for tactical management

Disease Conditions required for disease development Tactical methods

Scald (Rhynchosporium
commune)

10–208C (Skoropad 1960)
Humidity >92% for 2 days
(Ayesu-Offei and Carter 1971)

Seed treatment (Khan and Young 1988)
Barley grass control (Burdon et al. 1994)
Use of resistant varieties (Paynter et al. 2019)
Rotation (Khan 1988)
Foliar spray (Khan 1986)
Avoiding use of excess N (Jenkins and Jemmett 1967)

Net-type net blotch
(Pyrenophora teres f. teres)

Infected seeds (Shipton et al. 1973)
High humidity up to 30 h and temperature
10–258C (van den Berg and Rossnagel 1990)

Rotation and grazing (Khan and D’Antuono 1985; Khan 1986,
1988)
Use of resistant varieties (Paynter et al. 2019)
Seed-dressing fungicides (Platz et al. 1999)
Delayed sowing (Delserone and Cole 1987)
Avoiding use of excess N (Piening 1967)
Foliar fungicides (Shipton 1966; Thomas et al. 2008)

Spot-type net blotch
(P. teres f. maculata)

Similar to net-type Rotation and stubblemanagement (Brown et al. 1993;Duczek et al.
1999; Jayasena and Loughman 2001)
Grazing (Hills and Paynter 2012)
Avoiding use of excess N (Piening 1967)
Adequate K fertiliser (Brennan and Jayasena 2007)
Delayed sowing (Khan 1989)

Powdery mildew (Blumeria
graminis f. sp. hordei)

High relative humidity
15–228C (Mathre 1997)
>258C inhibits infection (Mathre 1997)

Use of resistant varieties (Paynter et al. 2019)
Control of barley volunteers (Limpert et al. 1999)
Use of seed dressing (Tucker et al. 2015)
Foliar fungicides (Jayasena et al. 2006; Hills and Jayasena 2013)
Adequate K fertiliser (Brennan and Jayasena 2007)
Reducing use of N fertiliser (Bainbridge 1974; Hills and Paynter
2007)

Leaf rust (Puccinia hordei) ~208C for urediniospore production (Simkin and
Wheeler 1974)
Free moisture (6 h at 100% relative humidity and
228C for maximum urediniospore germination)
(Simkin and Wheeler 1974)
Latent period decreases urediniospores as ambient
temperature increases from108C to258C(Teng and
Close 1978)

Use of resistance varieties (Wallwork et al. 1992; Paynter et al.
2019)
Time of sowing (Jayasena et al. 2018)
Seed dressings (Jayasena et al. 2018)
Fungicide sprays (Jayasena et al. 2018)
Green bridge control (Coutts et al. 2018)
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For stubble-borne diseases, the disease profile must be
known. This entails knowledge of the diseases present in
the paddock in the previous year and the susceptibility and
tolerance of the crop that is to be grown in the current year. For
air-borne diseases, the farmer also needs to know what
diseases were prevalent in the previous season, the disease
risks from any green bridge, and especially the diseases found
upwind from the current crop.

Decision-support tools for disease management are limited
and require development for necrotrophic pathogens such as

septoria, net blotches and scalds, and biotrophic diseases such
as powdery mildew. PREDICTA B is a support tool that is
increasingly used for detection of soil-borne diseases (Ophel-
Keller et al. 2008).

Variety selection

The use of resistant or tolerant varieties is the most economical
way to manage disease in rainfed crops. Although growing
resistant varieties does decrease disease risk, varieties also

Table 5. Common leaf and stem diseases of wheat, their conditions required for disease development and some methods of tactical management.

Disease Conditions required for disease development Tactical methods

Rusts:
* Stem rust (Puccinia graminis f. sp.

tritici)
* Leaf rust (P. recondita f. sp. tritici)
* Stripe rust (P. striiformis f. sp.

tritici)

Stem rust:
* Optimum temperature for disease development

~248C and reduced development <158C (Murray
et al. 2009)

* Leaf wetness essential for spore germination
(Murray et al. 2009)

Leaf rust:
* Overnight dews and optimum temperature

between 15–228C (Murray et al. 2009)
* Leaf wetness essential for spore germination

(Murray et al. 2009)
Stripe rust:
* Temperature 10–158C, humid with dew or rain

provides optimum conditions for disease
development (Murray et al. 2009)

* Temperature >258C limits disease development

Management practices adopted for three rusts are
similar:

* Control of green bridge (Park 2008)
* Use of resistant varieties (Park 2008)
* Early warning systems and fungicide sprays

(Loughman et al. 2005; Beard et al. 2018a)

Powdery mildew (Blumeria graminis
f. sp. tritici)

Breezy conditions with high relative humidity
Temperature 15–228C favourable
Temperature >258C and high rain less conducive and
will inhibit development (Murray et al. 2009)

Controlling volunteer wheat (Beard and Thomas
2018)

Crop rotation (Beard and Thomas 2018)
Avoid early sowing (Murray et al. 2009)
Use of fungicides (foliar or seed) (Thomas et al. 2017;
Beard and Thomas 2018)
Use of resistant varieties (Golzar et al. 2016; Zaicou-
Kunesch et al. 2018)
Avoiding excess use of N (Beard and Thomas 2018)

Septoria blotch (Parastagonospora
nodorum)

High rainfall
High relative humidity for 6–16 h and 20–278C
required for optimal spore production and
germination (Murray et al. 2009)

Crop rotation and stubble management (Francki et al.
2011)

Use of resistant varieties (Solomon et al. 2006)
Fungicide sprays (Solomon et al. 2006)
Adequate K nutrition (Cunfer et al. 1980; Beard and
Thomas 2018)

Septoria tritici blotch (Zymoseptoria
tritici)

Mild wet conditions (Hess and Shaner 1987a, 1987b)
Temperature 15–208C favourable (Murray et al.
2009)

Crop rotation and stubble management (McDonald
and Mundt 2016)

Avoiding early sowing (Eyal 1999; McDonald and
Mundt 2016)
Use of resistant varieties (Gigot et al. 2013; Shackley
et al. 2020)
Fungicide sprays (Marroni et al. 2006)
Avoiding excess use of N (Eyal 1999)
Adequate K nutrition (Arabi et al. 2002)

Yellow spot (Pyrenophora tritici-
repentis)

Wet weather
Optimum temperature 20–288C (Murray et al. 2009)

Use of resistant varieties (Shankar et al. 2015)
Crop rotation (Salam et al. 2013)
Avoiding early sowing (Wilson 1989)
Stubble management (Salam et al. 2013)
Increasing K, avoid using excess N (Beard et al.
2018b)
Fungicide spray (Bhathal et al. 2003; Salam et al.
2013)
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need to be high yielding for farmers to grow them. A single
variety will not be resistant to all diseases present in the
region; therefore, understanding the disease risk before
sowing the crop is important for variety selection and
disease management. Disease incidence varies with season,
and variety susceptibility may also interact with seasonal
influences. Variety selection can be facilitated through
the yearly publication of variety sowing guides
(e.g. Paynter et al. 2019; Zaicou-Kunesch et al. 2018) when
the disease-resistance profile of varieties is known. However,
this information is not always available and is a major
research requirement in some regions.

The use of seed that has been certified free of relevant
diseases, where available, can decrease seed-borne disease
risk. For instance, every 1% of grain infected by loose smut
leads to a 1% GY loss (Hills 2018). Those seeds need to be
treated with fungicidal seed dressings to prevent further
infection. As a minimum measure, farmer experience shows
that knowing the provenance of imported seed is advisable if
farm-saved seeds are not used.

Time of sowing

Sowing time can be altered to manage some crop diseases. For
instance, in the southern parts of WA, spore showers of yellow
spot (Pyrenophora tritici-repentis) occur in early April and
May, and wheat crops sown at this time are most susceptible. If
crops are sown later, disease risk is reduced. However, in
northern areas of WA, yellow spot spores mature after the end
of May and crops sown at this time are most at risk (Galloway
et al. 2016).

Crop nutrition

Growing a healthy crop reduces some disease risk. For
instance, incidence of barley powdery mildew and spot-type
net blotch can be reduced by up to 40% in crops that have
sufficient K. The combination of adequate K nutrition with
foliar fungicides can further significantly reduce the impact
of these diseases on GY (Brennan and Jayasena 2007).
Conversely, application of high rates of N can promote the
incidence of barley powdery mildew (Bainbridge 1974; Hills
and Paynter 2007). However, late-season urea sprays can assist
suppression of disease in winter wheat in some environments
(Gooding et al. 1988).

Chemical control

If resistant varieties are not present for all common foliar
diseases, fungicidal seed dressings can be used or fungicide
can be applied in-furrow with the fertiliser at seeding. If seeds
are not treated with fungicide, the seedling crop can be sprayed
with a foliar fungicide. In modern cropping systems, farmers
may focus on varieties with high GY irrespective of disease
profile and may become heavily reliant on fungicide control.
There is a need to consider an integrated approach to reduce
reliance on fungicides so that these chemicals can remain
effective in the future.

Implementing integrated control

Different diseases are controlled by different management
practices. Examples of the components of integrated control
measures for the major diseases of barley and wheat are
summarised in Table 4 and 5 below.

Take-all (Gaeumannomyces spp.)

Take-all is a soil-borne root disease of wheat, barley, rye and
oats, and is common in high-rainfall areas such as in the
southern region of WA (MacLeod et al. 1993). It is caused
by G. graminis vars tritici and avenae. Take-all is more severe
in sandy, alkaline, infertile soils and exacerbated by
continuous cropping, early sowing and poorly drained soils.
The pathogen survives in summer in the cereal residues of the
previous growing season’s grass hosts. The symptoms can be
first noticed when premature plant death occurs during grain-
filling, resulting in development of ‘white heads’. The affected
plants often occur in conspicuous, circular patches in the field.
Soil temperatures in the range 10–208C are optimal for
infection. Higher rainfall during winter favours early
infection by the disease, but late infection near crop
maturity has less impact on GY because infection is
confined to roots.

Long-term continuous cereal cropping has been shown to
decrease take-all over time (Kwak and Weller 2013; Lawes
et al. 2013). Benefits arising from reduced take-all may be
offset, however, by the economic losses arising from
continuous cereal cropping (Loughman et al. 2000).

There is no varietal resistance available against take-all
disease. Therefore, managing take-all relies primarily on
cultural practices to prevent survival of the fungus between
seasons. Practices such as eliminating grass hosts and use of
non-cereal break crops (lupins, canola, field pea (Pisum
sativum (L.)) in rotation can reduce carry-over of the
disease between seasons. Minimising crop residues can also
reduce take-all. However, no-till farming practices, which
have been widely adopted to increase accumulation of
organic matter and prevent soil erosion, serve to increase
take-all. Burning the stubble can reduce the amount of
infected surface residues but is not effective in eliminating
the infected materials below the ground level.

Concluding remarks

Economic considerations

The ability to respond to weather conditions during the
growing season may be complicated in the field by other
limiting factors, especially soil physical problems. Farmers
in both traditional and modern cropping systems may use
conservative management practices and alter inputs in
response to uncertain weather conditions and economic
returns (e.g. Kingwell et al. 1993; Yigezu et al. 2014).
However, when the causes for suboptimal performance are
not fully understood, a process of diagnosis of the problems
through local experimentation may well point the way to
profitable GY improvement (Anderson et al. 2014).

The tactical management factors identified in this review all
have a cost, or range of costs, and an anticipated benefit if
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effective. The impact on GY of each individual limiting factor
can be estimated as a starting point for estimating the benefit
and cost of remediating the factor. Comparisons of the range of
benefits for the wheat crop from the tactical management
factors can be made by examining published GY losses
arising from individual limiting factors, along with some
likely costs of treatment, possible benefits, and thus net
benefits (Table 6). These costs are based on published
values in the Australian literature, which in themselves
show some variability. However, the remediated GYs in
each of these publications were at, or close to, the
estimated rainfall-limited potential GY in each case. In
other regions where socioeconomic conditions may differ,
the values listed in Table 6 should be used only to assess
likely relative benefits of remediating the various limiting
factors, rather than as absolute values.

The data in Table 6 indicate that improving management of
factors such as sowing time, nutrient application, or control of
diseases, pests and weeds present at damaging levels can
return far more to the farmer than changing the crop
cultivar. This finding is similar to findings of Kirkegaard
et al. (2014) in Australia and Piggin et al. (2015) in in
northern Syria. However, many farmers prefer to adopt new
crop cultivars rather than addressing other management
factors, possibly because of the lower cost, logistical
considerations such as availability of machinery, or not
having the skills or confidence to implement other changes.
The difficulty of resolving such tactical decisions in an
environment where profit margins are small could be
assisted by development of a simple decision aid (or crop
model) based on the research discussed in this review. This
decision aid could include an indication of the likely sequence
of decisions and their linkage to seasonal conditions such as
rainfall, temperature and humidity.

The issue of the potential overuse of chemical methods to
manage the various biotic factors that can impact crop
production cannot be ignored if sustained increases in
productivity of rainfed systems are to be achieved.
Increasing evidence of genetic resistance of various weed
species to various chemicals (e.g. Owen and Powles 2018)
is one particular challenge for researchers continuing to

develop new, integrated systems that can be sustained into
the future. The costs and ultimate benefits of developing
integrated pest, weed and disease management systems
requires further research, development and extension in
order to achieve sustainable rainfed cropping systems
(e.g. Nordblom 2003). The costs of remediation of these in-
crop challenges relative to the potential benefits are quite small
(see Table 6), so farmers tend to apply measures on the basis of
very simple field observations rather than more detailed,
randomised counts as might be appropriate for experiments.

Implications

Although the classical agronomic questions regarding
practices such as sowing times, seed rates, and weed,
disease and pest management have largely been addressed
for the major cereal crops such as wheat and barley, widely
applicable information is less available for the pulse crops and
canola. The questions that remain are centred on integration of
these practices with the longer term strategic issues largely
involving soil improvement and crop rotations. Although we
have confined our review to tactical management, there is a
need for further examination of possible synergies between
tactical, strategic and genetic methods in lifting average GYs.
The relevance of research findings can be extended by using
multi-site and multi-factor field experiments, for which there is
a long tradition in Australia (e.g. French and Schultz 1984).
Where it is desirable to add value to such data through
development of crop models and decision aids, reliable field
data can be invaluable for validation.

Many leading farmers have adopted the relevant research
findings and their crop GYs are approaching the potential
(e.g. Kingwell et al. 1993; Abeledo et al. 2008; Hochman et al.
2012; Robertson et al. 2012; Kirkegaard et al. 2014). Reasons
for average or poorer GYs may be more related to operational
convenience, availability of machinery, skills, and attitudes to
economic risk rather than to maximising profits per se and they
remain a challenge for researchers and advisers. Application of
the findings regarding tactical management as outlined in this
review can provide only a part of the solution to the problems
that can be diagnosed on individual farms or soil types

Table 6. Factors limiting grain yield of rainfed crops (wheat or barley), the likely losses, potential costs of remediation and possible net benefits.

Limiting factor (and reference) Loss of grain
yield (t/ha)A

Cost of
remediation ($/ha)B

Net benefit
($/ha)C

Late sowing (Sharma et al. 2008) 0.9 50 211
Low seed rate (Anderson et al. 2004) 0.5 25 120
Inappropriate cultivar (Anderson et al. 2011) 0.2 25 33
Micronutrient deficiency (Zn) (Brennan 1991) 1.0 15 275
Macronutrient deficiency (P) (Brennan 1989) 0.8 70 162
Loss of grain yield due to N leaching (Simpson et al. 2016) 1.6 120 344
Inappropriate weed management (Moore 1979; Moore and Moore 2020) 1.0 20 270

1.2 30 318
Inappropriate disease management (Loughman et al. 2005) 0.6 37 137
Inappropriate insect management (Michael 2002; Murray et al. 2012) 0.4–1.8 12 104–510

ADifference between measured yield and calculated rainfall-limited yield, calculated as: seasonal rainfall – (seasonal rainfall/3) � 20.
BEarlier sowing cost (e.g. extra weed control $50, purchase of new seed $0.5/kg).
CCalculated at $290/t farm gate price (i.e. wheat price – average freight and tolls) and $1/kg for N fertiliser.
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(e.g. Anderson et al. 2014). The onset of widespread climate
change in the form of declining rainfall and changes in
seasonal rainfall distribution (Stephens and Lyons 1998) is
one of the main stimuli for reviewing some of the known
means of addressing these changes.
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